

Multi-mount cylinder——MD, MK Series

Compendium of MD\MK Series

Criteria for selection: Cylinder thrust

								L	Jnit:	Newt	on(N)
Bore	Rod	A - 41	4	Pressure		Oper	ating	pres	sure	(MPa)
size	size	Actir	ng type	area(mm²)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Single	Push side	28.3	-	1.5	2.9	4.3	5.7	7.2	8.6
6	3	acting	Pull side	21.2	-	-	0.8	1.5	2.2	2.9	3.6
0	3	Double	Push side	28.3	2.8	5.7	8.5	11.3	14.1	17.0	19.8
		acting	Pull side	21.2	2.1	4.2	6.4	8.5	10.6	12.7	14.8
		Single	Push side	78.5	-	3.9	7.9	11.8	15.8	19.7	23.7
10	4	acting	Pull side	66.0	-	1.4	4.1	6.8	9.5	12.2	14.9
10	4	Double	Push side	78.5	7.9	15.7	23.6	31.4	39.3	47.1	55.0
		acting	Pull side	66.0	6.6	13.2	19.8	26.4	33.0	39.6	46.2
16 6		Single	Push side	201.1	-	10.1	30.2	50.3	70.4	90.5	110.6
	6	acting	Pull side	172.8	-	8.7	25.9	43.2	60.5	77.8	95.1
16	0	Double	Push side	201.1	20.1	40.2	60.3	80.4	100.5	120.6	140.7
		acting	Pull side	172.8	17.3	34.6	51.8	69.1	86.4	103.7	121.0
		Single	Push side	314.2	-	15.7	47.1	78.6	110.0	141.4	172.8
20	8	acting	Pull side	263.9	-	13.2	39.6	66.0	92.3	118.7	145.1
20	0	Double	Push side	314.2	31.4	62.8	94.2	125.7	157.1	188.5	219.9
		acting	Pull side	263.9	26.4	52.8	79.2	105.6	131.9	158.3	184.7
		Single	Push side	490.9	-	24.7	73.8	122.8	179.1	221.0	270.1
25	10	acting	Pull side	412.3	-	20.7	61.9	103.1	144.4	185.6	226.8
23	10	Double	Push side	490.9	49.1	98.2	147.3	196.3	245.4	294.5	343.6
		acting	Pull side	412.3	41.2	82.5	123.7	164.9	206.2	247.4	288.6
		Single	Push side	804.2	-	40.2	120.7	201.1	281.5	361.9	442.4
32	12	acting	Pull side	691.2	-	34.7	103.8	173.0	242.1	311.2	380.3
52	12	Double	Push side	804.2	80.4	160.8	241.3	321.7	402.1	482.5	563.0
		acting	Pull side	691.2	69.1	138.2	207.3	276.5	345.6	414.7	483.8

Installation and application

- 1. When load changes in the work, the cylinder with abundant output capacity shall be selected.
- 2. Relative cylinder with high temperature resistance or corrosion resistance shall be chosen under the condition of high temperature or corrosion;
- 3. Necessary protection measure shall be taken in the environment with higher humidity, much dust or water drops, oil dust and welding dregs.
- 4. Dirty substances in the pipe must be cleared away before cylinder is connected with pipeline to prevent the entrance of particles into the cylinder.
- 5. The medium used by cylinder shall be filtered to 40 μ m or below.
- 6. As both of the front cover and piston of the cylinder are short, typically too large stroke can not be selected.
- 7. Anti-freezing measure shall be adopted under low temperature environment to prevent moisture freezing.
- 8. The cylinder shall avoid the influence of side load in operation maintain the normal work of cylinder and extend the service life.
- 9. If the cylinder is dismantled and stored for a long time, pay attention to conduct anti-rust treatment to the surface. Anti-dust caps shall be added in air inlet and outlet ports.

MK Series

Symbol

Product feature

- 1. Manufactured by our enterprise.
- 2. There are several fixation ways for the cylinder, and also convenient to install and use.
- ${\bf 3.\ Several\ cylinders\ can\ be\ assembled\ together\ to\ \ effectively}$ save the installation space.
- 4. The guide precision of piston rod is high and no additional lubricant is needed.
- 5. Fixated block is attached to piston rod, which prevents it from rotating.
- 6. Various cylinders are available for your choice.
- 7. The seal material with high temperature resistance is adopted to guaranteethe normal operation of cylinder at 150°C(Option).

Specification

Bore size(n	nm)	6	10	16	20											
A ating tuna	MK/MKD/MKJ			Double	acting											
Acting type	MSK/MTK			Single	acting											
Fluid		Air(to be filtered by 40 μ m filter element)														
Operating	Double acting	a(22~145p	ōpsi)													
pressure	Single acting		0.	2~1.0MPa	(28~145p	si)										
Proof press	ure			1.5MPa	(215psi)											
Temperatur	e ℃			-20	~70											
Speed range	e mm/s	Dou	ıble acting	: 30~500	Single a	cting: 50~	500									
Stroke toler	ance			+1.0												
Cushion typ	е		Bumper													
Port size [Note] M5×0.8 1/8																

[Note1] G thread is available.

Add) Refer to P451 for detail of sensor switch.

Stroke

Bore	size (mm)				Sta	nda	ard:	stro	ke	(mm)	Max.std stroke	Max.stroke
6	Double acting	5	10	15	20	25	30	35			35	40
O	Single acting	5	10	15	20						20	-
10	Double acting	5	10	15	20	25	30	35			35	40
10	Single acting	5	10	15	20						20	-
16	Double acting	5	10	15	20	25	30	40	50		50	70
10	Single acting	5	10	15	20						20	-
20	Double acting	5	10	15	20	25	30	40	50	60	60	80
20	Single acting	5	10	15	20						20	-
25	Double acting	5	10	15	20	25	30	40	50	60	60	80
23	Single acting	5	10	15	20						20	-
32	Double acting	5	10	15	20	25	30	40	50	60	60	80
32	Single acting	5	10	15	20						20	-

- Note) 1. Please contact the company for other special strokes.
 - $2. \ The \ dimensions \ of \ non-std \ stroke \ cylinder \ has \ the \ same \ dimensions \ as \ the \ next$ longer stroke std. stroke cylinder. e.g. 23mm stroke cylinder has the same dimensions of 25 std. stroke cylinder.

Ordering code

①Model	2Bore size	3Stroke	4 Adjustable stroke	5Magnet	6Thread type [Note1]
MK: Multi-mount cylinder(Double acting no-rotating type)					
MSK: Multi-mount cylinder(Single acting-push no-rotating type)		Refer to	No this code	Blank: Without	
MTK: Multi-mount cylinder (Single acting-pull no-rotating type)	6 10 16 20 25 32	stroke table	No tris code	magnet	G: G
MKD: Multi-mount cylinder(Double rod no-rotating type)	20 23 32	for details		S: With magnet	
MKJ: Multi-mount cylinder(Adjustable stroke no-rotating type)			10 20 30		

[Note1] Standard thread is blank here.

Inner structure and material of major parts

NO.	Item	Material	NO.	Item	Material
1	Rod nut	Carbon steel	11	Magnet washer	NBR
2	Piston rod	Stainless steel	12	Magnet	Sintered metal(Neodymium-iron-boron)
3	Screw	Carbon steel	13	Piston seal	NBR
4	No-rotating plate	Aluminum alloy	14	Wear ring	Wear resistant material
5	Bushing	Brass	15	Piston	Aluminum alloy
6	Fixed rod	Stainless steel	16	O-ring	NBR
7	Rod packing	NBR	17	C-clip	Spring steel
8	Body	Aluminum alloy	18	Back cover	Aluminum alloy
9	Bumper	TPU	19	Bumper	TPU
10	Magnet holder	Aluminum alloy			

MK Series

Dimensions

D ! \	Witho	ut ma	gnet	Witl	n magr	et	В		С	Ι.	D	_		Е		
Bore size\Item	Α		AC.	Α	A	C	В		C	'	ע	D	A			
6	51		33	51	3	33		5	22		3	1	8	М3×	0.5	
10	57		36	57	3	36		5	24		4	2	1	$M4 \times$	0.7	
16	56		30	66	4	0	20)	32		6	2	6	M5×0		
20	65		36	75	4	6	26	6	40		8	2	9	M6×	1.0	
25	73		40	83	5	0	32	2	50	1	0	3	3 1	И 8 × 1	.25	
32	84		42	94	5	2	40)	62	1	12	4	2 N	110×	1.25	
Bore size\Item	EA	EB	F	FA	G	G	4 (ЗΒ	G	С	GI	וכ	Н	J	JA	
6	7	8	5.5	2.5	8	9		11	1	9 10		9	-	6	5	
10	10	11	7	2	8	12	2	13	20	.5	11.	9	- 1	6	5.5	
16	11	12.5	8	4	8	17	7	13	26	.5	15	9	5	7.5	6.5	
20	12	14	10	5	8	8 20		16	3	2	19	8	6	9.5	8	
25	15.5	18	12	6	10	22	22 19		9 4		24	8	8	9.5	9	
32	19.5	22	17	6	12	29	29 24		4 4		30.8		10	11	11.5	
Bore size\Item	JB	JC	K	KB	L		LA	L	В		Р		PA	РВ	PC	
6	10	7	3.3	7	M3×	0.5	5	1	17	M5	5 × (8.0	14	10	_	
10	11	7	3.3	9	M3×	0.5	5	1	18		5 × 0	× 0.8 1		10	_	
16	14	7	4.5	12	M4×	0.7	5	2	25	M5×		8.0	14.5	10	3	
20	16	9	5.5	16	6 M5×0		7.5	5 3	30	M5×		8.0	19	11	9	
25	20	10	5.5	20) M5×0		8	38		M5 × 0		8.0	21.5	8.5	12	
32	24	11	6.5	24	M6×	1.0	9		18		1/8"		23	12.5	13	

Item	Α(Witho	ut mag	gnet)	A(With magnet)				AC	(With	out ma	gnet)	AC(With magnet)					
Bore size\Stroke	5St	10St	15St	20St	5St	10St	15St	20St	5St	10St	15St	20St	5St	10St	15St	20St		
6	61	66	76	81	61	66	76	81	43	48	58	63	43	48	58	63		
10	67	72	82	87	67	72	82	87	46	51	61	66	46	51	61	66		
16	71	76	91	96	81	86	101	106	45	50	65	70	55	60	75	80		
20	80	85	100	105	90	95	110	115	51	56	71	76	61	66	81	86		
25	88	93	108	113	98	103	118	123	55	60	75	80	65	70	85	90		
32	99	104	119	124	109	114	129	134	57	62	77	82	67	72	87	92		

Remark) The unmarked dimension is the same as MK standard type.

Bore size\Item	A(W	ithout	magne	et)	A(Wit	h mag	net)		AC Without magnet) (W			AC	, AE	В	С	D	DA	D	В	Е	
Dore Size (itelli	MK	(D	MK.	J	MKD	N	1KJ	(With			(With	n magnet) ^ [. Б	C	U	DA	MKD	MKJ	_	
6	7:	5	75		75		75		38		38		6	16.5	22	3	18	13	13	M3×	0.5
10	79	9	78		79		78		36			36	6	16.5	24	4	21	16	14.7	M4×	0.7
16	79	.5	80.5	;	89.5	6	0.5		30		40		7.5	20	32	6	26	16	17	$M5 \times$	8.0
20	9:	3	95		103		105		36			46	9	26	40	8	29	19	21	M6×	1.0
25	10	15	107		115	·	117		40		50		9	9 32		10	33	23	23 25 M8×		1.25
32	12	21	121		131		131		42		52		10	40	62	12	42	27	27	M10 ×	1.25
Bore size\Item	EA	EB	F	FA	G	GA	GB	GC	GD	Н	J	JA	JB	JC	K	K	В	Р	PA	PB	PC
6	7	8	5.5	2.5	8	9	11	19	10.9	-	6	5	10	7	3.3	1	7 I	$M5 \times 0.$	8 14	16	-
10	10	11	7	2	8	12	13	20.5	11.9	-	6	5.5	11	7	3.3	(9 I	$M5 \times 0$.	8 15.5	16	-
16	11	12.5	8	4	8	17	13	26.5	15.9	5	7.5	6.5	14	7	4.5	1	2 I	$M5 \times 0$.	8 14.5	17.5	3
20	12	14	10	5	8	20	16	32	19.8	6	9.5	8	16	9	5.5	1	6 I	$M5 \times 0.$	8 19	20	9
25	15.5	18	12	6	10	22	19	40	24.8	8	9.5	9	20	10	5.5	2	0 1	$M5 \times 0$.	8 21.5	17.5	12
32	19.5	22	17	6	12	29	24	49	30.8	10	11	11.5	24	11	6.5	2	4	1/8"	23	22.5	13